Mouse PECAM-1/CD31 AccuSignal ${ }^{\text {TM }}$ ELISA Kit - KOA0528

AccuSignal high sensitivity sandwich ELISA (Enzyme-Linked Immunosorbent Assay) Kit is an in vitro enzyme-linked immunosorbent assay designed for the quantitative detection of Mouse PECAM-1/CD31 in cell culture supernatantes, cell lysates, serum and plasma (heparin, EDTA).

KIT COMPONENTS

Mouse PECAM-1/CD31 AccuSignal ${ }^{\text {TM }}$ ELISA Kit

Component	Catalog Number	Description	Size
Antibody Coated ELISA Plate	KOA0528A	96-well plate pre-coated with anti-Mouse PECAM-1/CD31 antibody lyophilized recombinant Mouse PECAM-1/CD31	1
Target Protein Standard	KOA0528B	2 vials $(10 \mathrm{ng} /$ vial)	
Biotinylated Detection Antibody	KOA0528C	biotinylated anti-Mouse PECAM-1/CD31 antibody Avidin-Biotin-Peroxidase Complex (ABC) sample diluent buffer	$130 \mu \mathrm{l}$ (dilution 1:100)
ABC Complex	KAB0101	$130 \mu \mathrm{l}$ (dilution 1:100)	
Sample Diluent	KAE0101	antibody diluent buffer	12 ml
Antibody Diluent	KAF0101	KAG0101	ABC diluent buffer

I. STORAGE CONDITIONS

Store at $4^{\circ} \mathrm{C}$ for 6 months, or at $-20^{\circ} \mathrm{C}$ for 12 months from date of manufacture. Avoid multiple freezethaw cycles.

II. INTRODUCTION

Mouse PECAM-1/CD31 ELISA Kit is based on standard sandwich enzyme-linked immune-sorbent assay technology. This assay employs a monoclonal antibody specific for PECAM-1/CD31 pre-coated onto 96 -well plate. Standards (Expression system for standard: NSO; Immunogen sequence: E18-K590) and test samples are pipetted into the wells, and a biotinylated detection polyclonal antibody from goat specific for PECAM-1/CD31 is added to the wells. The wells are washed with PBS or TBS buffer. After washing away unbound biotinylated antibody, Avidin-Biotin-Peroxidase Complex is added to the wells and unbound conjugates are washed away with PBS or TBS buffer. HRP substrate TMB solution is added to the wells to visualize HRP enzymatic reaction. TMB is catalyzed by HRP to produce a blue color product. The addition
of stop solution changes the color from blue to yellow. The density of yellow is proportional to the amount of Mouse PECAM-1/CD31 amount captured in plate.

III. REQUIRED EQUIPMENT AND REAGENTS

- Microplate reader in standard size
- Automated plate washer
- Adjustable pipettes and pipette tips
- Clean tubes and Eppendorf tubes
- Washing buffer (neutral PBS or TBS)
- Preparation of 0.01M TBS:

Add 1.2 g Tris, $8.5 \mathrm{~g} \mathrm{NaCl} ; 450 \mu \mathrm{l}$ of purified acetic acid or $700 \mu \mathrm{l}$ of concentrated hydrochloric acid to 1000 ml distilled water and adjust pH to 7.2-7.6. Finally, adjust the total volume to 1 L .

- Preparation of 0.01 M PBS:

Add 8.5 g sodium chloride, $1.4 \mathrm{~g} \mathrm{Na} 2 \mathrm{HPO}_{4}$ and $0.2 \mathrm{~g} \mathrm{NaH} \mathrm{PO}_{4}$ to 1000 ml distilled water and adjust pH to $7.2-7.6$. Finally, adjust the total volume to 1 L .

IV. GENERAL CONSIDERATIONS

Please read the following instructions before starting the experiment.

- To inspect the validity of experimental operation and the appropriateness of sample dilution proportions, pilot experiment using standards and a small number of samples is recommended.
- The TMB Color Developing agent is colorless and transparent before using, contact us if it is not the case.
- Before using the Kit, briefly spin down the vials.
- For statistical reasons, we recommend both standard and samples should be assayed with a minimum of two replicates (duplicates).
- Do not let 96 -well plate to dry, this will inactivate active components on plate.
- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.
- Do not mix or substitute reagents or materials from other kit lots or vendors.
- To avoid marginal effect of plate incubation due to temperature difference (reaction may be stronger in the marginal wells), it is suggested that the diluted ABC and TMB solution be prewarmed in $37^{\circ} \mathrm{C}$ for 30 min before using.

V. SANDWICH ELISA PROTOCOL

A. Sample Preparation

Store samples to be assayed within 24 hours at $2-8^{\circ} \mathrm{C}$. For long-term storage, aliquot and freeze samples at $-20^{\circ} \mathrm{C}$. Avoid repeated freeze-thaw cycles.

- Cell lysates:

Lyse cells making sure there are no visible cell sediments. Centrifuge cell lysates at approximately $10,000 \times g$ for 5 minutes. Collect the supernatant.

- Serum:

Allow the serum to clot in a serum separator tube (about 4 hours) at room temperature. Centrifuge at approximately 1000 Xg for 15 min . Analyze the serum immediately or aliquot and store samples at $-20^{\circ} \mathrm{C}$.

- Plasma:

Collect plasma using heparin or EDTA as an anticoagulant. Centrifuge for 15 min at 1000 xg within 30 min of collection. Assay immediately or aliquot and store samples at $-20^{\circ} \mathrm{C}$.

- Note: It is important to not use anticoagulants other than those listed above to treat plasma. Other anticoagulants could block antibody binding sites.
- Cell Culture Supernatants:

Remove particulates by centrifugation, assay immediately or aliquot and store samples at $-20^{\circ} \mathrm{C}$.

B. Sample Dilution

Please note that levels of the target protein may vary between different samples. Estimation of the concentration of a target protein in the sample and the optimal dilution factors for each sample must be determined by the investigator. The diluted target protein concentration should fall near the middle of the linear regime in the standard curve. Sample diluent buffer should be used for dilution of samples.

Following are the suggested guidelines for sample dilution. The samples must be mixed well with the diluent buffer.

- High target protein concentration ($\mathbf{1 0 0 0 0 0} \mathbf{p g} / \mathbf{m l}-1000000 \mathrm{pg} / \mathrm{ml}$)

The working dilution should be $1: 100$. For example, add $1 \mu \mathrm{l}$ sample into a tube with $99 \mu \mathrm{l}$ sample diluent buffer.

- Medium target protein concentration ($\mathbf{1 0 0 0 0} \mathbf{p g} / \mathbf{m l}-100000 \mathrm{pg} / \mathrm{ml}$)

The working dilution should be $1: 10$. For example, add $10 \mu \mathrm{l}$ sample into a tube with $90 \mu \mathrm{l}$ sample diluent buffer.

- Low target protein concentration ($\mathbf{1 5 6 p g} / \mathbf{m l}-10000 \mathrm{pg} / \mathrm{ml}$)

The working dilution should be 1:2. For example, add $50 \mu \mathrm{l}$ sample into a tube with $50 \mu \mathrm{l}$ sample diluent buffer.

- Very Low target protein concentration ($0 \mathrm{pg} / \mathbf{m l}-156 \mathrm{pg} / \mathrm{ml}$)

No dilution necessary, or the working dilution should be 1:2.

C. Reagent Preparation

Reconstitution of the Mouse PECAM-1/CD31 standard:

Mouse PECAM-1/CD31 standard solution should be prepared no more than 2 hours prior to the experiment. Two vials of PECAM-1/CD31 standard (10ng/vial) are provided with each kit. Use one vial/experiment.

- For preparation of $10 \mathrm{ng} / \mathrm{ml}$ of Mouse PECAM-1/CD31 standard solution, add 1 ml sample diluent buffer into one vial, keep the vial at room temperature for 10 min and mix thoroughly.
- Label $1-8$ tubes. Tube \# 1-10,000pg/ml, \#2-5000pg/ml, \#3-2500pg/ml, \#4-1250pg/ml, \#5 - $625 \mathrm{pg} / \mathrm{ml}, \# 6-312.5 \mathrm{pg} / \mathrm{ml}, \# 7-156.25 \mathrm{pg} / \mathrm{ml}, \# 8-0.0$ (Blank).
- For standard \#1, add $1000 \mu \mathrm{~L}$ of undiluted stock standard into Tube\#1.
- Aliquot $300 \mu \mathrm{~L}$ of the sample diluent buffer into tubes 2-7.
- Transfer $300 \mu \mathrm{~L}$ from tube \#1 to tube \#2 and mix thoroughly.
- Transfer $300 \mu \mathrm{~L}$ from tube \#2 to tube \#3 and mix, and continue through tube\#7 for a serial dilution.
- Tube \#8 is left blank.

Note: The standard solutions are best used within 2 hours. The $10,000 \mathrm{pg} / \mathrm{ml}$ standard solution should be stored at $4^{\circ} \mathrm{C}$ for up to 12 hours, or at $-20^{\circ} \mathrm{C}$ for up to 48 hours. Avoid repeated freeze-thaw cycles.

Preparation of biotinylated anti-Mouse PECAM-1/CD31 antibody working solution:

The solution should be prepared no more than 2 hours prior to the experiment.

- The total volume should be $0.1 \mathrm{ml} /$ well x (the number of wells). Prepare $100-200 \mu \mathrm{l}$ more of the solution than the total volume required to compensate for pipetting errors.
- Biotinylated anti-Mouse PECAM-1/CD31 antibody should be diluted 1:100 with the antibody diluent buffer and mixed thoroughly. For example, add $1 \mu \mathrm{l}$ Biotinylated Anti-Mouse PECAM-1/CD31 antibody to $99 \mu \mathrm{l}$ antibody diluent buffer.

Preparation of Avidin-Biotin-Peroxidase Complex (ABC) working solution:
The solution should be prepared no more than 1 hour prior to the experiment.

- The total volume should be: $0.1 \mathrm{ml} /$ well x (the number of wells). Prepare $0.1-0.2 \mathrm{ml}$ more of the solution than total volume required.
- Avidin-Biotin-Peroxidase Complex (ABC) should be diluted 1:100 with the ABC dilution buffer and mixed thoroughly. For example, add $1 \mu \mathrm{l}$ ABC to $99 \mu \mathrm{l}$ ABC diluent buffer.

D. Assay Procedure

ABC working solution and TMB substrate reagent should be warmed at $37^{\circ} \mathrm{C}$ for 30 min prior to use. Samples and reagents should be mixed thoroughly and evenly after dilution. A standard curve for PECAM1/CD31 detection should be prepared for each experiment. It is recommended to determine sample fold dilution by simple estimation of PECAM-1/CD31 amount in the samples.

1. Aliquot $100 \mu \mathrm{l}$ per well of each Mouse PECAM-1/CD31 standard ($10,000 \mathrm{pg} / \mathrm{ml}, 5,000 \mathrm{pg} / \mathrm{ml}$, $2,500 \mathrm{pg} / \mathrm{ml}, 1,250 \mathrm{pg} / \mathrm{ml}, 625 \mathrm{pg} / \mathrm{ml}, 312.5 \mathrm{pg} / \mathrm{ml}$, and $156.25 \mathrm{pg} / \mathrm{ml}$) into pre-coated 96 -well plate.
2. Add $100 \mu \mathrm{~L}$ of the sample diluent buffer into the control well.
3. Add $100 \mu \mathrm{~L}$ of each properly diluted sample of mouse cell culture supernates, cell lysates, tissue homogenates, serum or plasma (heparin, EDTA) to each empty well. See "Sample Dilution" above for details.
It is recommended to assay all standards, controls and samples in duplicate.
4. Seal the plate with provided adhesive plastic cover and incubate at $37^{\circ} \mathrm{C}$ for 90 min .
5. Remove the cover and discard the solution. Invert the plate and blot it against clean paper towels or other absorbent material. Do NOT let the wells dry completely at any time.
6. Add 100μ l of biotinylated anti-Mouse PECAM-1/CD31 antibody working solution to each well, seal the plate with adhesive plastic cover and incubate at $37^{\circ} \mathrm{C}$ for 60 min .
7. Discard the solution and wash the plate 3 times with 0.01 M TBS or 0.01 M PBS (wash buffer) and each time let washing buffer stay in the wells for ${ }^{\sim} 1 \mathrm{~min}$. Wash by filling each well with $300 \mu \mathrm{l}$ of wash buffer using a multi-channel pipette or auto washer. Complete removal of liquid at each step is essential to good performance. (Note: for automated washing, aspirate all wells and wash THREE times with PBS or TBS buffer, overfilling the wells with PBS or TBS buffer). After the last wash, remove any remaining wash buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels or other absorbent material.
8. Add $100 \mu \mathrm{l}$ of prepared ABC working solution to each well, seal the plate and incubate at $37^{\circ} \mathrm{C}$ for 30 min.
9. Wash plate 5 times with 0.01 M TBS or 0.01 M PBS as described in step 5 .
10. Add $90 \mu \mathrm{l}$ of TMB substrate reagent to each well, seal the plate and incubate for $25-30 \mathrm{~min}$ at $37^{\circ} \mathrm{C}$ in the dark. (Note: the optimal incubation time should be determined by the end user).
11. Add $100 \mu \mathrm{l}$ of stop solution to each well. The color will change to yellow immediately.
12. Read at 450 nm in a microplate reader within 30 min after adding the stop solution.

Calculations

For calculations, (the relative O.D.450) $=$ (the O.D. 450 of each well) - (the O.D. 450 of Zero well). The standard curve can be plotted as the relative O.D. 450 of each standard solution (Y) vs. the respective concentration of the standard solution (X). The Mouse PECAM-1/CD31 concentration of the samples can be interpolated from the standard curve.
Note: if the samples measured were diluted, multiply the concentrations obtained from interpolation by the dilution factor.
VI. DATA OBTAINED FROM Mouse PECAM-1/CD31

Concentration (pg/mI)	0	156	312	625	1250	2500	5000	10000
O.D	0.032	0.149	0.245	0.413	0.751	1.246	1.952	2.170

(TMB reaction incubation at $37^{\circ} \mathrm{C}$ for $25-30 \mathrm{~min}$)
VII. Mouse PECAM-1/CD31 AccuSignal ${ }^{\text {TM }}$ ELISA KIT STANDARD CURVE

This standard curve was generated for demonstration purpose only (A standard curve must be run with each assay).

Range	$156 \mathrm{pg} / \mathrm{ml}-10000 \mathrm{pg} / \mathrm{ml}$
Sensitivity	$<10 \mathrm{pg} / \mathrm{ml}$
Specificity	Natural and recombinant Mouse PECAM-1/CD31
Cross-reactivity	There is no detectable cross-reactivity with other relevant proteins.

INTRA AND INTER ASSAY PRECISION

Intra-Assay Precision (Precision within an assay): Three samples of known concentration were tested on one plate to assess intra-assay precision.

Inter-Assay Precision (Precision between assays): Three samples of known concentration were tested in separate assays to assess inter-assay precision.

| | Intra-Assay Precision | | | Inter-Assay Precision | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample | 1 | 2 | 3 | 1 | 2 | 3 |
| N | 16 | 16 | 16 | 24 | 24 | 24 |
| Mean(pg/ml) | 228 | 1326 | 5663 | 230 | 1398 | 5316 |
| Standard deviation | 17.32 | 74.25 | 407.73 | 18.17 | 99.25 | 409.33 |
| CV (\%) | 7.6 | 5.6 | 7.2 | 7.9 | 7.1 | 7.7 |

VIII.ASSAY SUMMARY

- Prepare all reagents, samples and standards as instructed.
- Add standards or samples to each well used. Incubate the plate at $37^{\circ} \mathrm{C}$ for 90 min . Do not wash.
- Add prepared biotinylated antibody to each well. Incubate the plate at $37^{\circ} \mathrm{C}$ for 60 min . Wash plate 3 times with 0.01M TBS or PBS.
- Add prepared ABC working solution. Incubate the plate at $37^{\circ} \mathrm{C}$ for 30 min . Wash plate 5 times with 0.01M TBS or TBS.
- Add TMB developing reagent to each well. Incubate the plate at $37^{\circ} \mathrm{C}$ in dark for $25-30 \mathrm{~min}$.
- Add TMB stop solution. Read at 450 nm .

IX. TROUBLESHOOTING

Weak or No Signal

Possible Cause	Solution
Problem with the standard	Use new sample Check that the standard is appropriately handled
Incubation time too short	Follow the exact guidelines for incubation time (If the problem persists, try incubating samples at $4^{\circ} \mathrm{C}$ overnight)
Incubation temperature too low	Ensure incubations are done at correct temperature Before proceeding
Incompatible sample type	Use sample that the assay is known to detect as a positive control (Include such control in your experiment)
Incompatible assay buffer	Ensure assay buffer is compatible with the target of interest
Target present below detection limit	Decrease dilution factor or concentrate samples
Incorrect/Insufficient/ No substrate	Check the substrate identity Increase concentration or amount of substrate
Antibody stored at $4^{\circ} \mathrm{C}$ for several weeks or subjected to repeat freezethaw cycles	Use fresh aliquot of antibody that has been stored at $-20^{\circ} \mathrm{C}$ or below
Incorrect reagents added/ prepared; Missing reagents	Check protocol, ensure correct reagents are added in proper order and prepared to correct concentrations
Expired/Contaminated reagents	Prepare fresh/uncontaminated reagents
Enzyme inhibitor present	Avoid sodium azide in HRP reactions
Incorrect storage of components	Check storage conditions for the kit (Kit need to be stored at $4^{\circ} \mathrm{C}$)
Excessive plate washing	Gently pipette wash buffer (manual method) Ensure correct pressure (automatic wash system)
Wells dry out	Cover plate using adhesive cover at all incubation times
Plate read at incorrect detection wavelength	Use recommended wavelength/filter Ensure plate reader is set correctly for substrate used
Slow color development	Prepare substrate immediately before use Allow longer incubation time Ensure stock solution is unexpired and uncontaminated

Saturated Signal

Possible Cause
High sample concentration

Solution

Use higher sample dilutions (Determine the optimal dilutions by titration assay)

Excessive substrate	Decrease concentration or amount of substrate: The substrate provided with the ELISA kit might require further dilution Prepare substrate immediately before use
Substrate color changed before use	Use affinity-purified antibody and preferably one that is pre-adsorbed. Follow the exact guidelines (If the problem persists, try incubating samples at 4C overnight)
Non-specific antibody binding	Repeat the assay with lower antibody concentrations to find the optimal one for your experiment
Incubation time too long	Prepare and use fresh buffers
Excessive antibody	Follow the exact guidelines At the end of each washing step, flick the plate over a sink and dry the plate on a paper towel
Contaminated buffers or HRP	During incubations, cover plates with adhesive cover. Use a fresh cover every time the used cover is removed from the plate
Plate adhesive cover not used or re-used	
Plate read at incorrect wavelength	Use recommended wavelength/filter Ensure plate reader is set correctly for the substrate used
Excess time before plate reading	Read your plate within 30 minutes after adding the substrate (If the reading is not performed within this time frame, add a stopping solution after sufficient color is developed in the plate)

High Background

Insufficient washing	Follow the exact guidelines At the end of each washing step, flick the plate over a sink and pat dry the plate on a paper towel			
Excessive antibody	Repeat the assay with lower antibody concentrations to find the optimal one for your experiment			
Excessive substrate	Decrease concentration or amount of substrate			
Cross reactivity	Run appropriate controls	$	$	Use affinity-purified antibody and preferably one that is
:---				
pre-adsorbed				

Poor Standard Curve Generation

Possible Cause	Solution
Improper standard solution	Confirm dilutions are done correctly Prepare new standard curve as appropriate
Standard improperly reconstituted	Briefly spin vial before opening Inspect for undissolved material after reconstituting
Standard degraded	Store and handle standard as recommended Prepare standards no more than two hours before use
Pipetting error	Use calibrated pipettes and proper pipetting technique
Insufficient washing	Follow the exact guidelines At the end of each washing step, flick the plate over a sink and pat dry the plate on a paper towel
Poorly mixed reagents	Thoroughly mix reagents

Poor Replicate Data

Possible Cause	
Bubbles in wells	Ensure no bubbles are present prior to reading the plate
Insufficient washing of wells	$\begin{array}{l}\text { Carefully wash wells } \\ \text { Check that all ports of the plate washer are unobstructed }\end{array}$
Incomplete reagent mixing	Ensure all reagents are mixed thoroughly

Use a new cover every time the used cover is removed

from the plate\end{array}\right] $$
\begin{array}{l}\text { Ensure consistent sample preparation and optimal sample } \\
\text { storage (e.g. minimize freeze/thaw cycles) }\end{array}
$$\right\}\)

Inconsistent Assay-to-Assay Results

Possible Cause	Solution
Insufficient washing of wells	$\begin{array}{l}\text { Carefully wash wells } \\ \text { Check that all ports of the plate washer are unobstructed }\end{array}$
Varied incubation temperatures	Adhere to recommended incubation temperature

experiment\end{array}\right\} \begin{array}{l}During incubations, cover plates with plate cover

Use a new cover every time the used one is removed\end{array}\right]\)| Plate cover not used or re-used |
| :--- |
| Incorrect dilutions |
| Contaminated buffers |

Slow Color Development

Possible Cause	Solution
Substrates too old, contaminated or used at incorrect pH	Prepare fresh substrates at correct pH
Expired/Contaminated solutions	Prepare fresh reagents before use
Incorrect incubation temperature	Ensure plates and reagents are kept at temperatures as instructed During incubation, seal the plate completely and avoid stacking plates

Low antibody concentration

Repeat the assay with higher antibody concentrations to find the optimal one for your experiment

Plate Imaging Problem

Possible Cause	Solution
Oversaturated image after	Use full resolution image to analyze results (Do not use jpeg or other compressed formats)
acquisition	Re-focus your camera before taking a new image
Blurry spots in images	Use lower bin size, higher image resolution and/or lossless file
Repeated pixel values or	
rectangular spots	Reduce acquisition time
Flat standard in images	

X. RELATED PRODUCTS

Component	Catalog \#	Size
$10 x$ TBS pH 7.5	$\underline{\text { MB-012 }}$	1000 ml
10 x TBS pH 7.5	$\underline{\text { MB-013 }}$	1000 ml
$10 \times$ PBS pH 7.2	$\underline{\text { MB-008 }}$	1000 ml
$10 \times$ PBST pH 7.2	$\underline{\text { MB-075-1000 }}$	1000 ml

